Climate science has a huge advantage, as it covers so many disciplines, which all have to interact to yield a proper result. May it be meteorology, oceanography, glaciology and geophysics as the main physical subjects working on the issue, but are just the first layer. Below it you find maths, physics, chemistry and biology as the fundamental sciences on which these subjects base. And then there are all the auxiliary subjects like geology or computer science, which are highly interacting with climate science community. But this advantage has also its weak spots, as working with many disciplines lead also to many problems in the daily work.
One point are the different vocabularies these fields use. For the same thing or methodology, each discipline has its own description. This is also true for subjects which are very similar, like meteorology and oceanography, which share a lot of common ground, but have developed in the past decades in different directions. To illustrate that I usually illustrate this with a saying: “When you have a three year interdisciplinary project, you spend the first two years with writing a dictionary to communicate and in the third you can start to work.” This is of cause a massive exaggeration, but it shows that even after a long time working together it happens that the researcher from different fields still are not used to the others researchers views and language. And once again, for outsiders these fields are hardly different disciplines, we are not talking about interaction between e.g. social science and physics, where these problems might be much more severe.
To address this many study programmes have moved in the past years from a pure subject-based courses to interdisciplinary ones. The idea is that when students learn the different subjects from the start, the interdisciplinary science gets easier for the next generation. Because let’s face it, the future will be interdisciplinary, all the funding agencies require it and the pure subject based research seems to be mostly covered in the past. But there will be also the problems coming up from this approach. Coming from only one subject in the undergrad and graduate programme gives you a real expertise in this one subject. Having that background with some effort it is possible to translate the approaches of the other disciplines into your own language and then you are able to work with them like they are your own. It needs time, but it is at least possible. When the interdisciplinary study programmes fail to cover the whole extend of a single subject, but just parts of it in several disciplines, it might lead to problems in this approach. Yes, you might be fit in the basics of several fields, but when something unknown comes along the risk is there that you cannot bring it back to your own turf to work with it. It does not mean that it has to be this way, but it requires a lot of care when study programs are developed for the future.
So what is my own way? Well, I still went to a one subject study course (meteorology), sure you had your minors, but in the end it was more or less a training for translation of other fields into your own. My graduate project was together with computer scientists, my first postgrad with geodesist and geologist. Nowadays I work mainly with oceanographers. Of cause I encounter some problems within communication, because in some cases I miss some basics, but on the other side I do exactly the above described translation on a daily basis. As everyone, I am a bit biased towards the way I took myself, so I see the risks as well as the chances for the new approaches. We will see in the next decade, whether they will be successful and bring the science effectively forward, because that is in the end the only thing that counts.